Category: EHR

28 Sep 2017

Feature release:Automated MIPS Quality Dashboard

blog_mipsqualitydashboard

The MIPS program bundles Physician Quality Reporting System (PQRS), Meaningful Use EHR Incentive Program and Value-Based Modifier (VBM) program into a single program.

Under MIPS, eligible clinicians can earn bonuses and avoid penalties based on their performance.

Payment adjustments are applied to Medicare Part B payments with 2019 being the payment adjustment year for 2017 performance year.

MIPS calculates eligible clinician performance scores of up to 100 points across four measure categories:
• Quality (Replaces PQRS): 60% of 2017 performance score
• Advancing Care Information or ACI (Replaces Meaningful Use program): 25% of 2017 performance score
• Improvement Activities (New category): 15% of 2017 performance score

Integrated MIPS Quality dashboard in enki EHR, automatically calculates your decile scores in real time.

It also tracks your performance score based on Outcome and High Priority measures. So now, you can focus on care and compliance is automatic.

button_learnmoreaboutenki

_

20 Dec 2016

Product and Feature Launches in 2016

Major enki features and products launched in 2016.

enki-endowriter

 

enki Telemedicine
enki Telemedicine module lets you seamlessly connect to your patients wherever they are. Enable remote healthcare delivery in a secure and simple way using video and messaging based consults.

 

 

enki Patient Portal

The new and improved version of enki Patient Portal allows patients a convenient access to their medical records 24×7. The patient portal also integrates enki Telemedicine modules for virtual consults. Patients can interact with you, request appointments and medication refills directly through secure messaging modules.

EndoWriter

enki EndoWriter helps you capture endoscopy images and document your procedures effortlessly. Cloud based technology frees you up from expensive hardware and provides access to your notes from anywhere. One platform integration with enki EHR greatly improves your efficiency.

 

enki-telemedicine

 

ICD-10 integration

enki EHR demonstrates complete ICD-10 integration across all clinical documentation modules. The simplified ICD-10 code selection interface guides you to the accurate diagnosis code for documenting your cases in a structured and compliant way.

 

 

 

 

16 Apr 2016

How to Spur Innovation in Healthcare

blog_earlydaysofhealthcare

I loved Google Labs, an online site where you could stop by and test drive the company’s latest projects and innovations. Google discontinued it in 2011. In fact, I found this list of discontinued Google products and counted more than 75.

To get winners such as Android and Google Docs, the firm has had to experiment; not all its experiments have succeeded.

The same is true in healthcare. In our company – which serves healthcare providers – we constantly experiment. For example, we extended our electronic health records (EHR) platform to Google Glass, before we recognized that it would still take time before doctors adapt wearable displays to access patient records.

We also integrated our EHR to 23andMe’s genomic health information – a personalized test for individuals that analyzed their spit sample – until the FDA banned the use of the service for health. The promise of personalized healthcare is quite exciting, so we invested time and effort in experimentation. 23andMe recently announced that they would now use their genetic database to start a therapeutics division to develop drugs.

Such activities build competencies that prepare you for the future. It is a mistake to look at them through the lens of seeking immediate benefits. If you expect every project to deliver a guaranteed return, you will never be able to innovate, and you will have a very hard time developing new capabilities.

We started as a services company, but taught ourselves to develop a modest web portal that did analytics for clients. It was a small experiment that gave us confidence to commit to developing a mobile/cloud-based EHR platform, even when we didn’t have the money or skills.

Today, our comprehensive platform has multiple certifications and is in daily use by clients. We perceive that the platform will eventually have global relevance as a healthcare operating system that can support any health organization.

This does not imply that we have the solution to every problem at the intersection of technology and healthcare. We don’t, but we have something nearly as valuable: the willingness to learn, to experiment, and to fail.

To serve our clients in the United States, South Africa, and other locations, we spend a significant amount of time shadowing individual healthcare providers. Some embrace technology, while others find it intimidating. So we tailor our platform to meet the needs of different groups.

Some physicians carry an iPad everywhere, and in large measure delight in entering their own data. They comfortably see patients without the tedium of documenting records on a PC.

Other physicians still dictate information or scribble on a pad of paper, reliant on assistants who transcribe information into the EHR.

In both cases, we adapt our system to work differently for different groups. Both types of physicians still get to access patient information from their iPad or home computer when a problem arises at 2 a.m. This, too, requires experimentation.

Our world – and especially the healthcare industry – has become far too complex for any one solution to solve all challenges. The right approach is to bring ingenuity and a curious mind to each new situation. If you’re not a bit intimidated by each new project, then you probably don’t understand it enough. A bit of fear and apprehension ensure that you will focus sufficiently and bring your best talents.

I don’t think Google necessarily thinks of each experiment as a win or defeat. They are mostly evolutions. Some are stopped, some are changed, and others are released. We have a similar mindset, and so should you.

Originally published on LinkedIn,  by Praveen Suthrum, President & Co-Founder, NextServices.

16 Apr 2016

Electronic Health Records: Beyond mere data storage bins

electronichealthrecords

One of the most valuable technology company in world, Apple, recently debuted their health management tool called HealthKit. The tool promises to provide a dashboard that integrates health and fitness data of the users. Apple is not the only company doing so. Over the years there has been an exponential growth in health and fitness monitors such asFitbit, Jawbone UP, Nike’s Fuelband, Adidas micoach series and many more. Electronic Health Record providers such as Mayo Clinic and Epic are partnering with Apple to integrate HealthKit with their EHR systems.

Technological trajectory can be predicted towards integrated systems, constantly providing valuable healthcare data. EHRs have the potential to transform from being medical storage softwares, to action oriented health enabling platforms. We ourselves at NextServices, have been experimenting with developing smart EHR functions for Google Glass and have laid down the technology architecture for integrating fitness data streams (from Fitbit) and genetic data streams (from 23andMe) into enki – our cloud based mobile electronic health record system.

Many debate that this boom in technology is a passing fad, but with major players diving into integrating systems and creating a connected network, the others are bound to follow. Patient-physician visits are completely orchestrated today. Diagnosis and course of treatment is solely based upon how the patient is feeling at that point in time. This is risky business, what if the patient has a different set of symptoms tomorrow? Moreover, how would a physician determine the changes in vitals if the patient is not physically present at the practice? Connected systems can constantly track patient wellness.

Imagine a world with continuous flow of data from different sources and EHRs being a central hub where data is constantly monitored, stored and interpreted. Any fluctuations in patients’ health are immediately flagged and notifications are sent to the concerned physician instantly. The physician then checks alerts on her iPad or Android tablet/phone and determines course of treatment. Treatment transparency is always maintained by sharing records with the patients and through educational resources.

Apart from the sheer coolness, the data generated by the integrated systems would be most useful and EHRs being available at the point of care would impart care that is progressive and longitudinal.

16 Apr 2016

Remote Healthcare Delivery From Data to Drones

remotehealthcaredelivery

From remote monitoring to telemedicine to unmanned aerial delivery, all the technologies we need to deliver healthcare remotely via the Internet are available today. A variety of portable medical devices measure vital signs (temperature, heart rate, BP, BMI, oximetry and so on). Forget Skype, by next year Ostendo plans to have smartphones beam holograms just as R2-D2 did in Star Wars. Drones are being tested to deliver medical payloads to remote locations. Lab on a chip technology is more of a reality and can detect infectious diseases such as Malaria, Rotavirus, Influenza and so on. And digital stethoscopes, portable ultrasound machines, Internet-enabled otoscopes and retina cameras have been around for awhile.

All we need to do then is re-imagine healthcare delivery by connecting the dots. Let’s do so by first breaking up medicine into six discrete steps.

Six Steps of Medicine:

1. Underlying Indicators: This is when underlying indicators exist but symptoms haven’t manifested sufficiently to cause a patient to seek medical help. For example, a patient may be susceptible to heart disease (e.g. high cholesterol or high BP) but has never had symptoms such as fatigue or chest pain.

2. Visible Symptoms: Here, a patient suffers from mild to traumatic pain/discomfort owing to manifested symptoms. For example, fever is the most common symptom for a variety of diseases. At this step of the process, we do not know why a patient is suffering but we simply know that she is.

3. Preliminary Consultation: A preliminary consultation establishes objective data through vital signs (temperature, BMI, BP, SPO2 levels etc.). Vital signs broadly indicate problems that could become serious, persistent diseases.

4. Core Consultation: A core consultation is when a doctor tries to arrive at a diagnosis from a variety of possible options. Lab tests/CT-scans/radiology tests and so on are also conducted to arrive at as precise a diagnosis as possible.

5. Assessment and Plan: By this step, a doctor makes a clear assessment of the medical problem and prescribes a plan. This involves medications (e.g. antibiotics for an infection) or referring the patient to another specialist (e.g. a cardiologist for further investigation) or further examination.

6. Follow Up: Assuming that the patient follows through with the plan, a follow-up visit assesses the progress made and determines if any changes might be required.

It is these steps that need to be re-imagined and executed remotely removing the need for the doctor and patient to be co-located.

Advanced Technologies Enabling Remote Healthcare Delivery:

1. Lab-on-a-chip (LOC): An integrated microfluidics device that performs various laboratory functions. See Achira LabsCueFoldscope (uses paper to detect Malaria), Eugene Chan’s Universal Blood Sensor.

2. Imaging: A pocket ultrasound device can ‘show’ the heart and working of other organs. A portable X-Ray machine extends diagnostics remotely. See GE VscanMobisanteFuji SonositeSiemens AcusonTribogenics Modis 810.

3. Digital-enabled medical devices: A digital stethoscope, otoscope, retinal camera can help doctors physically examine specific organs via the Internet. See Thinklabs One stethoscopeRijuven CardiosleeveCellscopeWelchAllyn OtoscopeFirefly Digital OtoscopePhone-based retinal camera.

4. ECG and Vitals: Devices that can plug into a smartphone or tablet and can provide ECG and vitals such as respiratory rate, BP, BMI, temperature, oximetry. See ScanaduAliveCorCardiac Designs ECG CheckWello by Azoi, Withings.

5. EHR software: Other than storing medical records digitally, electronic health records can form a platform integrating data from doctors, patients, various medical devices and tests that make it possible to deliver healthcare remotely. This is the direction we are going with my company’s enki EHR platform.

6. Telemedicine software: Through technologies such as Skype, people are increasingly comfortable interacting over video. See TeladocAmerican WellDoctor on DemandiKureOstendo develops a chip that can bring hologram technology to smartphones that would make a physician-patient virtual interaction more immersive.

7. Analytics software: Medicine is actively becoming a data science subject to analytics and therefore, protocol-driven medicine that can help curb disease at source. For example, population-scale deworming or screening for TB or vaccination protocols. Please see clinical decision support illustrations at ZynxUpToDateemergeIsabel.

8. Unmanned Aerial Vehicles: Commercial drones are actively being tested to deliver payloads remotely. Watch this Amazon PrimeAir video that shows a drone deliver a package home. Why not prescriptions? 

A Health Box for Remote Healthcare Delivery

Several years ago, Parashuram, an attendant in our office lost his wife (who lived back home in a village) due to a gastrointestinal complication. I tried to get her medical records to doctors in the US but the diagnosis came in simply too late. She died a futile death – like several millions of patients who lack access to a timely diagnosis. That episode changed the direction of our company – it became obvious to me that health data needs to traverse easily and globally and an early diagnosis needs to be arrived at to avoid both costs and complexity.

Given all the technologies that are today available, imagine if a patient had a Health Box, a conceptualization that integrates everything to deliver healthcare remotely via the Internet.

A Simple Visualization: When in need of medical care, the patient or her family presses a button on the Health Box that alerts a contact center, which then patches on a nurse/doctor-on-call via a hologram. Per the doctor’s request, required accessories are plugged in to the Health Box to capture vital signs (e.g. BP, temperature, oximetry) and a physical exam is conducted (e.g. asking a patient to cough and placing the digital stethoscope on a patient’s chest or back). The data is seen in real-time via the EHR. The doctor makes a preliminary medical judgment regarding the next step of care. In case of emergencies, the contact center dispatches a drone to deliver a medical payload at the precise location of the Health Box.

Health-cost-vs-complexity

The World Bank estimates that India loses 6% of its GDP (that’s $110B) due to premature deaths and preventable illnesses. This statistic wouldn’t be a whole lot better for any developing country. The developed world has a more nuanced problem – the US also suffers healthcare access, premature deaths and preventable illnesses, perhaps more than the developing world. At the crux of the problem is our inability to stop disease at source. This is what remote healthcare delivery does – encourages patients and healthcare providers to deal with medical problems before they explode in complexity and cost. It’s imperative that we figure this out.

Illustration developed by Swapnil Chafale for representational purposes. Credit as due to creators of respective public images.

 By Praveen Suthrum, President & Co-Founder, NextServices.
16 Apr 2016

10 Global trends impacting medical care and what ASCs can do about it

10globaltrends

1) 90% of world’s data was generated in the last 2+ years. Vast portions of future data will constitute medical data generated through imaging studies, macro (lab tests, EHR, vitals, activity, diet etc.) and micro (genomic, microbiome, proteomic,  other biomarkers) data. Additionally, medical knowledge is doubling every five years.

2) Whenever a field becomes more digital, it makes physical co-location redundant – examples, Amazon Kindle, ATMs, digital music, movies, phones and so on. Other high risk industries (e.g. flying a plane) rely largely on data algorithms with people controlling them.

3) DNA testing has dropped to sub $1,000 levels. 23andMe sequences a third of the genome for $100 (though they have stopped offering health related genetic reports after the FDA sent them a letter). It is expected that DNA testing will drop to pennies and doctors will routinely prescribe it. Separately, 1 million gene expression data sets are available as publicly accessible repositories.

4) Every 50 years, there’s a revolutionary change in healthcare – germ theory to advances in medication. It is expected that the biggest change now is that medicine will become a data science.

5) Several medical devices are increasingly Internet-enabled – e.g. GE’s V-scan ‘shows’ the heart instead of a stethoscope, Scanadu’s upcoming Scout measures a variety of vital signs remotely.

6) Autonomous vehicles (drones) are expected to deliver drugs and other goods remotely (see Matternet). It’s possible to build a basic quadcopter with a camera for $100-200.

7) Patients are increasingly quantifying themselves and comparing their data with others. Example Crohnology is a social network for Crohn’s Disease patients.

8) Artificial Intelligence is becoming a reality. IBM’s Watson has been training itself at Kettering Cancer Institute. IBM has made Watson available as an API that can be used by other applications. AI-based Google car (I sat in the first version in 2012) actually works quite well!

9) Most patients will have access to an Internet-enabled smart phone or tablet device and it’ll connect from everywhere. Patients will possibly even ‘wear’ a computing device.

10) Most doctors are performing some form of data-enabled, evidence-based medicine (e.g. boom in lab tests) instead of practicing on gut-feel.

*

Questions to consider for ambulatory surgery centers

1) Could ambulatory surgery centers expand the ownership of the medical problem from episodic care to the source of the medical problem? For e.g. ASCs focusing on screening for colon cancer can go upstream and identify why its patients are getting colon cancer.

2) Through the aid of EHR data and virtual care, can consults pre-and-post surgery be done remotely? Could new patients be screened virtually, thereby expanding outreach by 10x or more? Outside of the insurance reimbursement model, are there other ways to monetize this? (See American Well that partners with insurances).

3) What would an ASC’s impact on its area of care be if it were to collect and document data from its expanded virtual care model?

4) What would an ongoing multi-variant analysis from different sources with abnormalities reveal for the ASC’s patient population?

5) What role do bio/ genetic markers play in the ASC’s medical area of question? Example, for eye care.

6) Is there a correlation between location and the types of patients seen at the surgery center?

7) What insights could an ASC gain if a large portion of its patients were connected to each other online?

8) What if the EHR was implemented for delivery of healthcare itself in the future and not just as a means of digital storage and quality control?

By Praveen Suthrum, President & Co-Founder, NextServices.
16 Apr 2016

If patient care was like flying a plane…

blog_flyingaplane

If patient care was like flying a plane, a plane was an EHR and a doctor was its pilot…

…the doctor would be alerted before patients fell sick

…the EHR would be reliable enough to be trusted to treat a patient under guidance

…there would be control towers that actually understood what other EHRs were saying

…the doctor and her assistant wouldn’t differentiate between treating one or a few hundred patients at a time

…patient care would be dynamic, not episodic and stuttered

…care wouldn’t be tied to one region or one country, it would be global

…medicine would be as precise a data science as flying

*

Several operating models exist in other high-risk industries…waiting to be borrowed.

16 Apr 2016

Update on remote healthcare delivery from Michigan to Sri Lanka

blog_healthcaredeliveryfrommichigantosrilanka

I wrote earlier about an experiment in remote healthcare delivery – in which medical students from University of Michigan (under the guidance of an Ann Arbor-based physician Naresh Gunaratnam, MD) are working with an eldercare facility in Sri Lanka (Grace Care Center) to manage health of 40 patients via a virtual, group consult every other week. Here’s what we have learnt so far.

Key Takeaways

1) A group consult is very effective, even emotionally. Unlike the private nature of healthcare delivery we are used to in the developed world, a group consult can actually be highly effective – even emotionally. It helps patients realize that others are sick too and they are not alone. This somehow converts the group consult into a more supportive environment that can possibly increase patient compliance.

To describe a group consult, a patient in Trincomalee, Sri Lanka sits in front of a Skype camera and interacts with doctor(s) in Ann Arbor, Michigan while other patients wait in the background and observe. The doctor(s) go over key vitals, past history, medication list, dosages and examine latest data available and note what’s changed from the last time. They ‘look’ at the patient via Skype, ask questions (some general) with the help of a translator/ medical assistant on the Sri Lanka side. Naresh and the medical students arrive at a consensus on what to do and then they move on to the next patient.

2) One hour together is a lot of time. When a group of doctors go over each case methodically for a group of patients, a lot is actually accomplished. Time is saved. There’s a unique sense of transparency – everyone knows what is being done. Unlike in private practice medicine, there’s a different sense of teamwork among the doctors and among patients. Learning occurs both ways.

3) The mind can’t really tell the difference. Video-conferencing even via a blurry medium (in this case Skype over a moderately paced Internet connection) is very effective. Patients (and doctors) forget after a point that no one is physically in front of each other. The doctors aren’t located in a formal office – in fact, some are on their bed, some in their studies, some in their kitchen. This provides a different sense of camaraderie and in a completely different way they are welcoming the patient into a personal space. After the initial minutes, the mind actually forgets what’s virtual and what’s real. The patient-doctor interaction can get as immersive and real as a video game.

4) Using evidence-based guidelines. Given the age of patients, the focus of care has been hypertension, followed by diabetes. Readings are captured by the assistant every other day and entered into the system. We are now programming enki EHR using JNC 8 guidelines for hypertension to automatically assist during care based on age and medical background of the patient. During the group consult, the guidelines keep care-givers in check based on evidence-based protocols. The evidence-based methodology provides great balance to the human interaction enabled through a virtual consult.

4) Medical devices that aid remote healthcare delivery. From blood pressure monitors to glucometers to stethoscopes, there are now several Internet-enabled devices that can “show” you the data via the Internet.Quantified Care demonstrated via the Smartphone Physical a variety of devices that could be used to conduct a physical exam remotely. The most interesting device out there is Scanadu Scout that captures a variety of physiological readings (several times a day if needed) through a tiny sensor-filled machine. We are exploring the use of remote monitoring devices to further our experiment.

5) Sometimes, virtual is better than the real thing. This past week, Naresh shared the outcome of a short survey done amongst patients. They feel well taken care of and actually prefer ‘virtual care’ over a real one. While this may be early, it’s startling and very telling. But when you think about it, it’s actually not surprising. For some patients, the alternative to ‘virtual care’ is usually bad care or even no care.

*

Why this is the future and could change how healthcare is delivered

Every few decades, medicine undergoes a big shift – increasing access, life expectancy and so on. We are in the middle of another one – where medicine is becoming a more precise data science. There’s increasingly more data available about the human body – from a gross level (# of steps taken in a day to # of hours slept) to a deeper level (DNA testing to microbiome testing). Doctors are increasingly reliant on data (usually via lab tests) before making a medical judgment. Most data is always available via a patient’s electronic medical record. The ‘Internet of things’ is a very real trend (think, the Nest thermostat) and is becoming the ‘Internet of medical things’ where medical devices are Internet-enabled. Patients continue to live longer through the aid of medications and fixes at the hospital. Fewer and fewer doctors are getting into primary care where the basic flow chart of a patient’s diagnosis begins. Cost of care will continue to explode (even in the developing world) as science advances further within specialties and the influences of regulation, administration, insurance companies and law continue to rise.

The trends point to a world where access to quality and reliable healthcare will not just continue to be difficult but may also increase. The trends also point to a possible future where healthcare is accessible from anywhere through a mobile Internet connection with the aid of virtual consults and medical data through an EHR.

By Praveen Suthrum, President & Co-Founder, NextServices.

09 Apr 2016

10 tips to work with resistant staff while rolling out an EHR

blog_10tipstoworkwithresistantstaff

Just as driving a car takes time and becomes second-nature with practice, so would learning a new system. Good systems aren’t usually designed with the first time user in mind but are designed for the second-time, repeat user. It’s best not to expect that you’ll simply get it when you start using a system – anything that’s worthwhile takes a bit of time and interest to learn. Assuming that the system is designed well, here are a few tips to keep in mind while working with staff during an EHR rollout:

1) Develop a 3×3 matrix based on skill and resistance. On one side, divide the rows into High, Medium, Low skill levels. On the other side, divide the columns into High, Medium and Low resistance levels. Plotting staff in such a matrix helps you identify high skilled-low resistance ones, high skilled-high resistance ones, low skilled-high resistance ones and so on. This knowledge will help you take the right actions when issues occur.

2) Rollout in modules, not phases. Don’t attempt rolling out the entire EHR platform at the same time. Don’t think linearly (one after the other), instead think in concentric circles where modules build upon each other. At the center are the core modules that help document a basic chart, then expanding outward are modules with greater functional depth. Do not go to the next set of modules until you and your team have nailed (score a 100%) the core ones. For example, when you start the rollout don’t worry about Clinical Quality Measures of Meaningful Use – focus on documenting a basic SOAP note in the quickest, consistent way possible. This is important for ongoing success.

3) Identify champions. Early on in the process, identify who really wants to make it happen. Go across the hierarchy and create an informal rollout team that would help you during the process. Provide additional training opportunities.

4) Communicate. Have daily (10min), weekly (1hr) and monthly meetings (1hr) to align everyone’s goals, remove issues as they occur rather than letting them pile up.

5) Shadow, observe and give feedback as it occurs. Feedback is most valuable when it comes in the form of assistance. Shadow doctors and staff and help them resolve a mistake as it occurs.

6) Have a pilot phase. It helps to iron out the kinks with the system and staff when there are no real patients around. There’s no need to rush through a rollout.

7) Make it a game. Score points (e.g. on knowledge, helpfulness, speed etc.) and put the chart up on a big monitor for everyone to review by the end of the day. Thinking of the rollout as a game, will make it easier. Competition amongst staff members will help everyone get better.

8) Make the EHR vendor part of the team. Just because something doesn’t look familiar, may not mean that something’s wrong with the software. Have the approach of including the vendor as part of the team versus treating them as someone external to your environment.

9) Fall-back option. Think through on all the ways that the rollout could go wrong during a live patient scenario. Prepare staff on what to do when something like that happens (e.g. Internet downtime).

10) Celebrate. It’s important to celebrate with staff on the small wins during the rollout. This could be even a simple cheer or an ice-cream for everyone. It helps keep the atmosphere positive and engage everyone in the right direction.

09 Apr 2016

Why go mobile with your electronic health record?

go mobile with your electronic health record

It’s possibly not too difficult to imagine that we will mostly live in a mobile world in the future but for now, here are 10 reasons to go mobile with your EHR:

  1. You can have the records in your EHR follow you around instead of being tied to a desk.
  2. You can look at your patients while consulting with them instead of staring at a computer screen.
  3. You can save real estate that servers and computers occupy, if not paper records.
  4. You can get access to medical records from anywhere including Antarctica – you simply need to be networked.
  5. You can securely message with staff attaching medical charts instead of calling them or getting paged.
  6. You can complete your notes from home, hospital or even the parking lot.
  7. You can use your mobile EHR as an alarm system to alert you to do the right things at the right time.
  8. You can save money by not having to take backups and hiring IT staff.
  9. You can potentially see patients virtually, from anywhere.
  10. You can prescribe medications from anywhere.
[FREE GUIDE]
[FREE GUIDE]
[HOW TO GROW YOUR LAB THROUGH REFERRALS]
[HOW TO GROW YOUR LAB THROUGH REFERRALS]
[Adenoma Detection Rate Infographic]
[Adenoma Detection Rate Infographic]
[Referrals: Your Most Powerful Network]
[Referrals: Your Most Powerful Network]
[The Ultimate Guide To Boost Your Online Ratings And Grow Your Patient Volume]
[The Ultimate Guide To Boost Your Online Ratings And Grow Your Patient Volume]
[The Ultimate 13-Point Checklist To Increase Patient Volume]
[The Ultimate 13-Point Checklist To Increase Patient Volume]
The Handy AR Bundle - 4 pre-designed templates to help you get paid faster]
The Handy AR Bundle - 4 pre-designed templates to help you get paid faster]